Quantum Sensing
& Biology Lab

Pioneering novel sensing technologies that leverage quantum phenomena to unravel complex biological processes.

State-of-the-art nanofabrication and characterization facilities enabling groundbreaking research at the quantum-biology interface.

Research Impact

Publications
Years Research
Team Members
Research Areas

Lab Overview and Mission

The Quantum Sensing and Biology Lab, led by Dr. Aeron Tynes Hammack at the Molecular Foundry, Lawrence Berkeley National Laboratory, is dedicated to pioneering novel sensing technologies that leverage quantum phenomena to unravel complex biological processes.

Research Focus

By bridging the gap between quantum physics, nanotechnology, and molecular biology, the lab aims to develop transformative tools for single-particle analysis.

Core Technologies

Development of nanofluidic integrated circuits (NFICs) and digital microfluidic (DMF) devices for unprecedented insights into fundamental mechanisms of life.

Research Areas

Nanofluidic Integrated Circuits

Development of comprehensive single-particle sensing NFICs to measure denatured byproducts of digested single cells.

Innovation: WIPO Filing WO2017087908

Quantum Physics & Sensing

Investigations into nanofabricated excitonic and plasmonic devices and development of techniques for manipulating and measuring quantum states at the nanoscale.

Applications: HAMR, plasmonic transducers, SNOM, scanning tunneling microscopy & spectroscopy

Quasiparticles & Condensates

Exploring the behavior of quasiparticles (excitons, cooper pairs, etc.) in nanostructures and their potential to form coherent quantum states like Bose-Einstein condensates.

Key Publications: 15+ papers in PRL, Nature, Nano Letters

Phage Biology

Study of bacteriophages for therapeutic applications, including combating antibiotic resistance through advanced assays and computational tools.

Impact: Clinical trials for recurrent UTIs

Machine Learning in Biology

Application of probabilistic graph assembly, deep neural networks, and large language models to predict structure and function for microbial "dark proteins" from metagenomic datasets.

Publication: Nature Reviews Microbiology 2024

Advanced Materials

Development of metal-ceramic composite structures for superconducting qubits, high-power density plasmonic devices, and 3D photonic crystals.

Recent: J. Appl. Phys. 2022, Sci. Rep. 2021

Principal Investigator

Portrait of Dr. Aeron Tynes Hammack

Dr. Aeron Tynes Hammack

Staff Scientist, Nanofabrication Facility

PhD, Condensed Matter Physics, UCSD
Molecular Foundry, LBNL
Co-founder, EpiBiome
32+ Publications

Academic Journey

1997-2001

BS, Electrical Engineering and Computer Science

University of California, Berkeley

2003-2010

PhD, Condensed Matter Physics

University of California, San Diego

Dissertation: "Studies of transport and thermalization of excitons and the development of techniques for in-situ manipulation of excitons in coupled quantum wells"

2010-2012

Postdoctoral Researcher

Molecular Foundry Imaging Facility, LBNL

Synchrontron and electron spectroscopy of surface ligand states for nanopartiles

2012-2014

Research Staff Member

HGST/Western Digital - HAMR Project

Near-field characterization of plasmonic devices by SNOM, SEM-CL, and TEM-EELS

2015-2023

Co-founder & Scientific Lead

EpiBiome → Locus Biosciences

Developed phage-based therapeutics, led to clinical trials for recurrent UTIs

2023-Present

Staff Scientist

Molecular Foundry Nanofabrication Facility, LBNL

Biological Nanosensing and Quantum Materials research

Contact Information

Lab Location

LBNL - Molecular Foundry
Dr. Aeron Tynes Hammack
M/S 067-2206
1 Cyclotron Road
Berkeley, CA 94720
USA

The Molecular Foundry is a U.S. Department of Energy Nanoscale Science Research Center providing state-of-the-art facilities for nanofabrication and characterization.

Collaboration Opportunities

We welcome inquiries from potential collaborators, students, and postdoctoral researchers interested in quantum sensing, nanotechnology, and biological applications.


qbio@lbl.gov
athammack@lbl.gov

Publications

Machine learning sheds light on microbial dark proteins

2024

Hammack, A. T. & Blaby-Haas, C. E.Nature Reviews Microbiology

Applies advanced machine learning techniques to illuminate the structures and functions of millions of microbial "dark proteins", opening new frontiers in understanding microbial biology and biotechnology applications.

doi: 10.1038/s41579-023-00974-9 Read

Metal-ceramic composite structures for fabrication of high power density plasmonic devices

2022

Otto, L. M., Liu, S., Ng, R., Schwartzberg, A., Aloni, S., & Hammack, A. T.Journal of Applied Physics

Demonstrates novel metal-ceramic composite architectures that enable plasmonic devices to operate at unprecedented power densities while maintaining thermal stability. This work addresses critical challenges in high-power nanophotonics applications.

doi: 10.1063/5.0123477 Read

Simultaneous multimethod scanning probe microscopy of complex nano-systems

2021

Otto, L. M., Nowak, D., Park, S., Stipe, B. C., & Hammack, A. T.Journal of Applied Physics

Presents advanced multimodal scanning probe microscopy techniques that enable simultaneous characterization of multiple physical properties in complex nanoscale systems, providing comprehensive insights into their structure-function relationships.

doi: 10.1063/5.0054404 Read

Methods for tuning plasmonic and photonic optical resonances in high surface area porous electrodes

2021

Otto, L. M., Gaulding, E. A., Chen, C. T., Kuykendall, T. R., Hammack, A. T., Toma, F. M., Ogletree, D. F., Aloni, S., Stadler, B. J. H., & Schwartzberg, A. M.Nature Scientific Reports

Introduces systematic approaches to engineer both plasmonic and photonic resonances in porous electrode architectures, enabling precise optical control for applications in sensing, energy conversion, and photocatalysis.

doi: 10.1038/s41598-021-86813-y Read

Moiré pattern of interference dislocations in condensate of indirect excitons

2021

Leonard, J. R., Hu, L., High, A. A., Hammack, A. T., Wu, C., Butov, L. V., Campman, K. L., & Gossard, A. C.Nature Communications

Reports the first observation of moiré patterns formed by interference dislocations in exciton condensates, revealing fundamental insights into topological defects and phase coherence in quantum degenerate exciton gases.

doi: 10.1038/s41467-021-21446-3 Read

Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers

2018

Otto, L. M., Ogletree, D. F., Aloni, S., Staffaroni, M., Stipe, B. C., & Hammack, A. T.Nature Scientific Reports

Develops advanced imaging techniques to visualize and quantify bidirectional optical coupling in waveguide-plasmonic systems, providing critical design principles for efficient near-field enhancement devices.

doi: 10.1038/s41598-018-24061-3 Read

Predicting scattering near-field optical microscopy of mass-produced plasmonic devices

2018

Otto, L. M., Burgos, S. P., Staffaroni, M., Ren, S., Süzer, Ö., Stipe, B. C., Ashby, P. D., & Hammack, A. T.Journal of Applied Physics

Establishes predictive models for characterizing mass-produced plasmonic devices using near-field optical microscopy, enabling quality control and performance optimization in industrial nanofabrication.

doi: 10.1063/1.5032222 Read

Pancharatnam-Berry phase in condensate of indirect excitons

2018

Leonard, J. R., High, A. A., Hammack, A. T., Fogler, M. M., Butov, L. V., Kavokin, A. V., Campman, K. L., & Gossard, A. C.Nature Communications

Demonstrates the manifestation of Pancharatnam-Berry geometric phase in exciton condensates, opening new pathways for topological quantum optics and valleytronic applications in semiconductor systems.

doi: 10.1038/s41467-018-04667-x Read

Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

2015

Rosen, E. L., Gilmore, K., Sawvel, A., Hammack, A. T., Doris, S., Aloni, S., Altoe, V., Nordlund, D., Weng, T.-C., Sokaras, D., Cohen, B. E., Urban, J. J., Ogletree, D. F., Milliron, D., Prendergast, D., & Helms, B. A.Chemical Science

Develops molecular beacon strategies using d-block heterometallics for precise nanocrystal surface characterization, enabling atomic-level understanding of surface structures and their functional properties.

doi: 10.1039/C5SC01474C Read

Plasmonic near-field transducer for heat-assisted magnetic recording

2014

Zhou, N., Xu, X., Hammack, A. T., Stipe, B. C., Gao, K., Scholz, W., & Gage, E. C.Nanophotonics

Details the design and optimization of plasmonic near-field transducers for heat-assisted magnetic recording (HAMR), demonstrating breakthrough performance in next-generation data storage technologies.

doi: 10.1515/nanoph-2014-0001 Read

Pattern formation in the exciton inner ring

2013

Remeika, M., Hammack, A. T., Poltavtsev, S. V., Butov, L. V., Wilkes, J., Ivanov, A. L., Campman, K. L., Hanson, M., & Gossard, A. C.Physical Review B

Investigates complex pattern formation within exciton inner rings, revealing underlying mechanisms of collective exciton behavior and providing insights into many-body physics in semiconductor systems.

doi: 10.1103/PhysRevB.88.125307 Read

Spin currents in a coherent exciton gas

2013

High, A. A., Hammack, A. T., Leonard, J. R., Yang, S., Butov, L. V., Ostatnický, T., Vladimirova, M., Kavokin, A. V., Liew, T. C. H., Campman, K. L., & Gossard, A. C.Physical Review Letters

Demonstrates the generation and control of spin currents in coherent exciton gases, establishing a new paradigm for spin-based information processing using excitonic systems.

doi: 10.1103/PhysRevLett.110.246403 Read

Spontaneous coherence in a cold exciton gas

2012

High, A. A., Hammack, A. T., Leonard, J. R., Yang, S., Butov, L. V., Ostatnický, T., Vladimirova, M., Kavokin, A. V., Liew, T. C. H., Campman, K. L., & Gossard, A. C.Nature

Reports the first direct observation of spontaneous coherence in cold exciton gases, providing definitive evidence for exciton condensation and establishing a foundation for exciton-based quantum devices.

doi: 10.1038/nature10903 Read

Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films

2011

Llordes, A., Hammack, A. T., Buonsanti, R., Tangirala, R., Aloni, S., Helms, B. A., & Milliron, D. J.Journal of Materials Chemistry

Presents a versatile approach for constructing metal oxide nanocomposite films using polyoxometalates and colloidal nanocrystals as building blocks, enabling tailored electronic and optical properties for device applications.

doi: 10.1039/C1JM10514K Read

Interface segregating fluoralkyl-modified polymers for high-fidelity block copolymer nanoimprint lithography

2011

Voet, V. S. D., Pick, T. E., Park, S. M., Moritz, M., Hammack, A. T., Urban, J. J., Ogletree, D. F., Olynick, D. L., & Helms, B. A.Journal of the American Chemical Society

Introduces fluoralkyl-modified polymers as interface segregating agents for high-fidelity block copolymer nanoimprint lithography, achieving unprecedented pattern transfer accuracy and defect reduction.

doi: 10.1021/ja1094292 Read

Electrostatic conveyer for excitons

2011

Winbow, A. G., Leonard, J. R., Remeika, M., Kuznetsova, Y. Y., High, A. A., Hammack, A. T., Butov, L. V., Wilkes, J., Guenther, A. A., Ivanov, A. L., Hanson, M., & Gossard, A. C.Physical Review Letters

Demonstrates the first electrostatic conveyer for transporting excitons over macroscopic distances, enabling controlled exciton transport and paving the way for excitonic circuits and devices.

doi: 10.1103/PhysRevLett.106.196806 Read

All-optical excitonic transistor

2010

Kuznetsova, Y. Y., Remeika, M., High, A. A., Hammack, A. T., Butov, L. V., Hanson, M., & Gossard, A. C.Applied Physics Letters

Realizes the first all-optical excitonic transistor using indirect excitons, demonstrating optical switching and amplification without electrical contacts, marking a milestone for exciton-based computing.

doi: 10.1063/1.4722938 Read

Kinetics of the inner ring in the exciton emission pattern in GaAs coupled quantum wells

2009

Hammack, A. T., Butov, L. V., Wilkes, J., Mouchliadis, L., Muljarov, E. A., Ivanov, A. L., & Gossard, A. C.Physical Review B

Provides comprehensive analysis of the kinetics underlying the formation of inner ring patterns in exciton emission, elucidating transport and cooling mechanisms in coupled quantum well systems.

doi: 10.1103/PhysRevB.80.155331 Read

Excitonic switches operating at around 100 K

2009

Grosso, G., Graves, J., Hammack, A. T., High, A. A., Butov, L. V., Hanson, M., & Gossard, A. C.Nature Photonics

Achieves excitonic switching at temperatures approaching 100 K, representing a crucial advance toward practical excitonic devices and demonstrating the feasibility of cryogen-free operation.

doi: 10.1038/nphoton.2009.166 Read

Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap

2009

High, A. A., Thomas, A. K., Grosso, G., Remeika, M., Hammack, A. T., Meyertholen, A. D., Fogler, M. M., Butov, L. V., Campman, K. L., & Gossard, A. C.Physical Review Letters

Demonstrates precise trapping of indirect excitons using diamond-shaped electrostatic potentials, enabling controlled studies of dense exciton gases and their quantum properties.

doi: 10.1103/PhysRevLett.103.087403 Read

Indirect excitons in elevated traps

2009

High, A. A., Hammack, A. T., Butov, L. V., Hanson, M., & Gossard, A. C.Nano Letters

Introduces elevated electrostatic traps for indirect excitons, reducing interactions with impurities and achieving enhanced exciton mobility and lifetime for fundamental physics studies.

doi: 10.1021/nl900605b Read

Localization-delocalization transition of indirect excitons in lateral electrostatic lattices

2009

Remeika, M., Graves, J. C., Hammack, A. T., Meyertholen, A. D., Fogler, M. M., Butov, L. V., Hanson, M., & Gossard, A. C.Physical Review Letters

Observes the quantum phase transition between localized and delocalized states of excitons in artificial electrostatic lattices, demonstrating analogies to condensed matter systems and quantum simulation capabilities.

doi: 10.1103/PhysRevLett.102.186803 Read

Effect of spatial resolution on the estimates of the coherence length of excitons in quantum wells

2008

Fogler, M. M., Yang, S., Hammack, A. T., Butov, L. V., & Gossard, A. C.Physical Review B

Quantitatively analyzes how experimental spatial resolution affects measurements of exciton coherence length, establishing protocols for accurate characterization of quantum coherent phenomena in semiconductor systems.

doi: 10.1103/PhysRevB.78.035411 Read

Kinetics of indirect excitons in an optically-induced trap in GaAs quantum wells

2007

Hammack, A. T., Butov, L. V., Mouchliadis, L., Ivanov, A. L., & Gossard, A. C.Physical Review B

Studies the temporal dynamics of indirect excitons in optically-induced traps, revealing cooling, recombination, and transport mechanisms essential for controlled exciton manipulation.

doi: 10.1103/PhysRevB.76.193308 Read

Exciton optoelectronic transistor

2007

High, A. A., Hammack, A. T., Butov, L. V., Hanson, M., & Gossard, A. C.Optics Letters

Realizes the first exciton optoelectronic transistor, demonstrating optical control of exciton flow and establishing a fundamental building block for exciton-based information processing devices.

doi: 10.1364/OL.32.002466 Read

Photon storage with nanosecond switching in coupled quantum well nanostructures

2007

Winbow, A. G., Hammack, A. T., Butov, L. V., & Gossard, A. C.Nano Letters

Demonstrates photon storage with nanosecond-scale switching using coupled quantum wells, enabling optical memory elements with ultrafast read/write capabilities for photonic information processing.

doi: 10.1021/nl070386c Read

Repulsive interaction in the macroscopically ordered exciton state in GaAs/AlxGa1−xAs coupled quantum well structures

2007

Yang, S., Mintsev, A. V., Hammack, A. T., Butov, L. V., & Gossard, A. C.Physical Review B

Reveals the role of repulsive interactions in forming macroscopically ordered exciton states, demonstrating exciton crystallization phenomena analogous to classical Wigner crystals.

doi: 10.1103/PhysRevB.75.033311 Read

Coherence length of cold exciton gases in coupled quantum wells

2006

Yang, S., Hammack, A. T., Fogler, M. M., Butov, L. V., & Gossard, A. C.Physical Review Letters

Measures the coherence length of cold exciton gases, providing direct evidence for macroscopic quantum coherence and establishing benchmarks for exciton condensation studies.

doi: 10.1103/PhysRevLett.97.187402 Read

Trapping of cold excitons in quantum well structures with laser light

2006

Hammack, A. T., Griswold, M., Butov, L. V., Smallwood, L. E., Ivanov, A. L., & Gossard, A. C.Physical Review Letters

Demonstrates all-optical trapping of cold excitons using laser light, providing a flexible and contactless method for confining and manipulating exciton gases in semiconductor nanostructures.

doi: 10.1103/PhysRevLett.96.227402 Read

Excitons in electrostatic traps

2006

Hammack, A. T., Gippius, N. A., Yang, S., Andreev, G. O., Butov, L. V., Hanson, M., & Gossard, A. C.Journal of Applied Physics

Characterizes the properties of excitons confined in electrostatic traps, providing fundamental understanding of trapped exciton systems and their potential for quantum device applications.

doi: 10.1063/1.2181276 Read

Origin of the inner ring in photo-luminescence patterns of quantum well excitons

2006

Ivanov, A. L., Smallwood, L. E., Hammack, A. T., Yang, S., Butov, L. V., & Gossard, A. C.Europhysics Letters

Elucidates the physical origin of the inner ring phenomenon in exciton photoluminescence patterns, resolving long-standing debates about exciton transport and cooling dynamics in quantum wells.

doi: 10.1209/epl/i2006-10002-4 Read

Observation of spatially inhomogeneous electronic structure of Si(100) using scanning tunneling spectroscopy

2005

Nagaoka, K., Comstock, M. J., Hammack, A. T., & Crommie, M. F.Physical Review B

Reveals spatial variations in the electronic structure of Si(100) surfaces with atomic resolution, providing crucial insights for understanding surface physics and semiconductor device performance.

doi: 10.1103/PhysRevB.71.121304 Read